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Let B be a real separable Banach space and R: B* -+ B a covariance operator.
All representations of R in the form Eenaen, {en, n2l} < B, are characterized.

Necessary and sufficient conditions for R to be compact are obtained, including

a generalization of Mercer's theorem. An application to characteristic

functions is given.
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The study of covariance operators is a major companent in the theory of
probability measures on Banach spaces [¥4;12}5—3f. The covariance oper-
ator of a strong second-order measure is always compact [23; however, the
covariance operator of a weak second-order measure need not be compact. In
this paper we first characterize series representations of covariance oper-
ators, and then give a set of necessary and sufficient conditions for a
covariance operator to be compact. The classical Mercer's theorem ¥} can be
obtained as an immediate corollary. These results are then applied to extend
a result of Prohorov and Sazanov {&] on relative compactness of probability
measures from Hilbert space to Banach space.

/m

2. Definitions and Notation

B is a real separable Banach space with norm |[-|[| and topological
dual B*. A linear operator R: B* > B is a covariance operator if R is
symnetric and non-negative: <Ru,v> = <u,Rv> and <Ru,u> > 0, for all u,v in
B*. A probability measure u on the Borel o-field of B is said to be weak
second-order if IB<x,u>2du(x) < «, for all u in B*; y is strong second-
order if fB||x||2du(x) < =, Every weak second order measure u has a

mean element m in B and a covariance operator R: B*+ B [9 ], [10], defined by

<m,v> = fB<x,v>du(x)

<Ru,v> = fB<x~m,u><x-m,v>du(x) ,

for all u,v in B*, Strong second-order measures have compact covariances;
the strong second order property is not necessary in order that y have
compact covariance.

For a covariance operator R: B* + B it is well known [8], [1], that there

exists a separable Hilbert space H ¢ B such that the natural injection
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jf H-~» B.is céntinuous and R = jj*. H is the RKHS of R and is the comple-
tion of range (R) with respect to the inner product <oty defined by
<Ru,Rv>, = <Ru,v>.

IH will denote the identity on H. For u,v in B*, z in B (resp. in H),
(uev) (z) = <v,z>u (resp., <v,z>Hu). If T is any map r(T) = range(T). T
is the linear topology on B* determined by a neighborhood base at zero of
the form V (0) {feB*: sup<f,x>2 < ¢} for all € > 0 and all compact sets
CecB (Tc is the topology zicuniform convergence on compact sets). For a
given covariance operator R: B* + B, AR is the real-valued quadratic func-

tional on B* defined by qpf = <Rf,f>. The notation R = Eneneen for

{en,nzl} c B means that the sequence (ZTen@en) converges to R in the strong

operator topology: Z¥<e ,f>e -+ Rf in the nom topology of B, for all f
in B*. = L e,®€, has a similar interpretation. If {u ,n21} is any
orthonormal basis for H, then R = fgunejun, [(91. KR will denote the unit
ball in H.

If u is a probability measure on the Borel o-field of B, its character-

stic functional ;i is defined as

i(x) = f e1<x’y>du(y) , for x in B* .

3. Representation of Covariance Operators.

1 For
In this section, R is an arbitrary covariance operator. R3¢ iﬂ
- J
‘ed ]
Theorem 1. R = Zneneen if and only if e = jv_, vyeH forn 21, and ‘lon
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! Proof. It suffices to show that the stated conditions are necessary for

R=]e®e. SupposeR=]eee,and fix e,. Let P, = e;0¢,. To show

nn n' n’

-4 e ¢ range(j), let (as in [3]) D: r(j*) -+ B be defined by Dj*f = Pkf. Then
. 2 2 2 2 2 2

[D5*€[ 1% = [IPEI1® = lley]|*<e " < 1ley 1%L <t 0,57 = |ley |1 <re, 8> =

ey IF |B*fl|é. Thus D can be extended to a continuous linear map from T(3%) =

H into B. From its definition, Dj* = Py, so Pk = jD* and thus ey € range(j).

To see that I, = Zvnevh, where jv, = e, n2 1, define Q= Z?vn n

n
1 . L. 2 N 2 . 2
Qq = @ and Q 2 0, so Qf exists. ||Q§J*f||H - 21<f,en> t {13*£1 1y, so

1 1 . .
that llQﬁll <1 and ||Q§x||H > ||x||H for all x in r(j*). Thus,
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[ v ev )3 - (15 = [lQui*f - 3*1 1}
Soxel12 4 | [axg] |2
< - llQi*ellf + 1l

which converges to zero as N + = for any fixed f in B*. Thus, ZVnevn = IH
on r(j*), and the result follows by T(3%) = H. O

Remark. Suppose E is a locally convex topological vector space, R: E' + E
is a covariance operator, and R = jj*, where j: H > E is the injection and H
is the RKHS of R. R will have such a representation, for example, if E

is separable and quasi-complete [8]. In this case, it is easily shown that

Theorem 1 holds without modification.

The representation IH = Zvnevh does not require that {vn, nz1} be a CONS

in H; however, sufficient conditions for {Vh’ n21} to be a CONS in H can be given.

Proposition 1. Suppose IH = ZVnevn; the following are equivalent:

(M) vl =1
(2) Vi { splvn, nFKJ
(3) vt spivn, n#Kk} .

If any of the above conditions hold for all k 2 1, then {vn, n21} is a

CONS for H.




4, Compact Covariance Operators.

Theorem 2. Suppose R = Zeneen, {e ,n21} ¢ B. Let {v ,n21} c H be such that
e, = jvn, n2l. The following are equivalent:

(1) R is compact;

(2) j is compact;

3) j[KR] is compact in B;

(4) the series Jv nejvn converges uniformly in H on bounded subsets of

B*;
(5) (Zlileneen) converges to R uniformly in B on bounded subsets of B*;

(6) qp is w*-continuous on bounded subsets of B*;

(7N ar is T-continuous.

Proof. (1) => (2). Suppose fa + f in the w* topology of B*, where

. . 2
[1£,1] s k for all o. Then [|j*f -j*f||; = <R(f -£), (£ -£)> < 2K| IR(E-£) |15
since R is compact, j*fa ~ j*f in H [4, p. 486] and thus j is compact.

(2) = (3). j compact implies j[l\’R] is relatively compact in B. Since

KR is weakly compact in H and j is weakly continuous, j[KR] is weakly compact

in B, and thus closed.
(3) = (2) by definition.
N
(2) = (4). By Theorem 1, J} voev =T, SetQu=J]vev. IfAcB* is
bounded, then F*[AJ is compact; by Dini's theorem IlQﬁxl |H + x| |H wiformly an

j*[A]. Hence ||(Qy-T)j*x| Ié < ||3*x| ll-zl - ||Q§j*x] I}Z, + 0 uniformly on A,

(4) = (5} since j is continuous.

(5) = (1), since R is the wmniform limit of compact operators.

(2) «==>(6). Follows from the fact that j is compact if and only if j*fOl -0
in the norm topology of H for all bounded generalized sequences (fa) in B*

. 2
which are w* convergent to zero [4, p. 486], and ap(f)) = HJ*fal IH’
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(1) => (7). Suppose R is compact. Writing C = j[KR], C is compact in B.

ag(D) = <RE,£> = |[j*] |7 = sup<jrf ol = swp<t, 0l Thus ag is T;-continuous

xeK xeC
at zero. TC-continuity of aR follows from qR(fa) = qR(fa-f) - qR(f) + 2<Rf,fa>.

(7) = (1). Suppose aR is Tc-continuous. Using (6), R is compact if ag

is w* continuous at 0 on bounded subsets of B*. But B is separable so

that the w* topology on bounded subsets of B* is metrizable and it suffices

to consider sequences. Suppose f_ E* 0 and ||fn|| < k. Let L be an arbitrary
compact subset of B. Since {fn} is bounded in B* the fn are equicontinuous
and uniformly bounded as continuous functions on L. Thus, by the Arzela-
Ascoli Theorem [4, p. 266] {fn} is relatively compact as a subset of CDR(L).
Thus since fn E* 0, fn converges to 0 uniformly on L. Therefore fn TE 0

and qR(fn) + 0. This completes the proof of Theorem 2. ]

Remarks. (1) Suppose r: [0,1]x[0,1] - R is continuous, symmetric and positive
definite. For fixed te[0,1], let m (x) = x, for x in C[0,1]; ||nt|| = 1.
A compact covariance operator R: C*[0,1] -+ C[0,1] is defined by [Ru](t) =
élr(t,s)du(s) for any u in C*[0,1] (by Arzela-Ascoli Theorem). Thus for
s,te[0,1], <Rnt,ws> = r(t,s). The integral operator in L2[0,1], corres-
ponding to the kernel r, has continuous orthonormal eigenvectors {yn,nzl}
and associated non-zero eigenvalues {An,nzl}; it is well known that
{Aﬁyn,nzl} is a CONS in the RKHS H of R. Thus, from Theorem 2, Z§=1Anyn(t)yh(s)
converges uniformly to r(t,s) for all t,s in [0,1]. This is the classical
Mercer's Theorem ({7, pp. 245-246].

(2) The fact that the unit ball of H is compact in B when R is compact

was proved by Kuelbs [5 ] under the assumption that R is the covariance of a

strong second-order measure.




5. Characteristic Functionals

Let A denote a family of probability measures on B (separable Banach) and

A the corresponding family of characteristic functionals.

Theorem 3. Let B be a separable Banach space. Then the following are
equivalent:

a) There exists a topology T on B* such that for each family A of
probability measures on B, 7\ 1s equicontinuous in this topology if and only
if A is relatively compact in the topologv of weak convergence

b) B is finite dimensional.

Proof. As in the Hilbert space case (see [ 0, Lema 2]) Te is the weakest
topology on B* such that relative compactness of A => equicontinuity of I,
Suppose that (a) holds. Then .1 and T equicontinuity of A implies

relative compactness of A. Now let R: B* + B be any compact covariance operator.
Let (en} be a CONS in the RKHS of R. Define by to be the zero mean Gaussian
measure on B with covariance operator le(en eec . Then {ﬁk} is 1. equicontinuous
by Theorem 2 and {”k} is relatively compact. Therefore R is thé covariance of

a Gaussian probability measure on B and by [9 , Theorem 11] B is finite

dimensional, O

Theorem 3 extends a result of Prohorov and Sazonov [ 6] who proved it for

Hilbert spaces. \
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